
Author’s version of the work (2024)

Neural Texture Block Compression

S. Fujieda and T. Harada

Advanced Micro Devices, Inc.

Figure 1: Neural Texture Block Compression (NTBC) encodes multiple textures in a single material in BC formats with reduced
storage size while maintaining reasonable quality. Top row: block-compressed data in BC1 for diffuse. NTBC (bottom-right)
produces the equivalent compressed data to the reference BC (Ref. BC, top-left). Weight Index visualizes 2-bit indices for each
pixel with the viridis colormap where colors from black to yellow represent 0 to 3. Bottom row: zoom-ins of three textures in the
MetalPlates013 material from [Dem24] such as, from left to right, diffuse, normal, and roughness.

Abstract
Block compression is a widely used technique to compress textures in real-time graphics applications, offering a
reduction in storage size. However, their storage efficiency is constrained by the fixed compression ratio, which
substantially increases storage size when hundreds of high-quality textures are required. In this paper, we pro-
pose a novel block texture compression method with neural networks, Neural Texture Block Compression (NTBC).
NTBC learns the mapping from uncompressed textures to block-compressed textures, which allows for signifi-
cantly reduced storage costs without any change in the shaders. Our experiments show that NTBC can achieve
reasonable-quality results with up to about 70% less storage footprint, preserving real-time performance with a
modest computational overhead at the texture loading phase in the graphics pipeline.

1. Introduction

The desire for more immersive experiences in games and
virtual reality increases the demand for high visual fidelity
in real-time graphics applications. To meet this demand, tex-
tures play a crucial role in providing detailed and realistic

surfaces through a lot of material properties such as dif-
fuse color, normal maps, and other BRDF information. How-
ever, each material property requires a high-resolution tex-
ture which consumes a large amount of storage and is of-
ten the bottleneck for the performance of graphics applica-

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

tions. Block Compression (BC) is one of the most popular
techniques to reduce the storage footprint of textures. BC
has different types of formats (BC1-BC7), which are sup-
ported by most modern GPUs and graphics APIs such as
DirectX [Mic20]. These formats offer the desirable random-
access property with fixed-rate block compression, where
each 4� 4 texel block is compressed to a fixed number of
bytes. BC1 and BC4 compress each block to 8 bytes, while
other formats compress each block to 16 bytes. Therefore,
a single 4k texture compressed even with BC1 and BC4 re-
quires 8 MB of storage, which reaches the magnitude of gi-
gabytes for a scene with hundreds of 4k textures that are
common in modern high-quality games.

Recent formats in BC such as BC6H and BC7 achieve
higher-quality compression with a variety of modes and
spatial partitioning patterns for each block. More recently,
variable-rate compression formats such as ASTC [NLP�12]
offer a well-balanced compression between quality and stor-
age, using variable block sizes and flexible bit rates. How-
ever, these formats require more expensive computations to
find optimal configurations for each block.

In this work, we propose a novel neural BC approach,
Neural Texture Block Compression (NTBC), that reduces
the storage requirements of BC formats. NTBC employs
multi-layer perceptions (MLPs) to simultaneously encode
block-compressed data of all textures in one material,
achieving lower bit rates than the standard BC while pro-
ducing the same block-compressed data format.

NTBC is meant to reduce the texture footprint on the disk.
Network weights are stored in the disk which are loaded
into the memory. Then inference is executed to reconstruct
block-compressed texture data which are copied to VRAM.
Therefore, it does not require any change in the shaders,
which makes our method easier to adopt in the existing
graphics pipelines. We also utilize multi-resolution feature
grids to encourage model optimization and compress them
through quantization-aware training to reduce storage costs.
This paper focuses on the BC1 and BC4 formats, which
are the simplest and most widely used for RGB and single-
channel textures, respectively.

The main contributions of this work are as follows:

� We introduce Neural Texture Block Compression
(NTBC), a novel block compression based on MLPs opti-
mized specifically for each material.
� We use multi-resolution feature grids compressed through

quantization-aware training for better model optimization
and storage efficiency.
� We demonstrate that NTBC reduces the storage cost of

BC textures with minimal quality loss.
� Our experiments show that NTBC can encode multiple 4k

textures in one material within 10 minutes and infer block-
compressed data with a modest overhead on a single GPU.

2. Related Work

We propose a neural texture compression method following
BC standards with compressed feature grids. Thus, in this
section, we begin by reviewing traditional BC and neural
texture compression methods, and then we present a brief
overview of quantization techniques for neural networks.

2.1. Traditional Texture Compression

The random access property of texture data is crucial for the
efficient handling of compressed textures in real-time graph-
ics pipelines on GPUs. Delp and Mitchell [DM79] introduce
block truncation coding (BTC) which is the first encoding
method with fixed bits per block for greyscale images. The
method divides the image into non-overlapping 4�4 blocks
and encodes them with two 8-bit values and 1-bit indices to
choose one of these two values.

Modern texture compression standards follow this BTC
approach, including the S3 texture compression (S3TC)
schemes [INH99]. S3TC is the first approach extending BTC
to RGB images, which is later called DXTC and renamed to
BC1 – BC3 in DirectX [Mic20]. BC1 encodes 4� 4 blocks
into 8-byte structures. This structure has two 16-bit RGB565
endpoints and a set of 16 2-bit indices to look up the corre-
sponding texel color from a color palette. The palette con-
tains four colors with two additional colors linearly interpo-
lated between the endpoints. BC1 has another mode to sup-
port a 1-bit alpha channel, but it is not our focus in this work.

BC4 is a specialized version of BC1 for single-channel
images. While utilizing the same 8-byte block size as BC1,
BC4 employs two 8-bit endpoints and a 3-bit index per pixel
to reference an 8-color palette. This palette consists of the
endpoints and either four or six linearly interpolated values,
depending on whether the first endpoint numerically exceeds
the second. In cases with fewer interpolated values, special
values 0 and 1 are incorporated. The expanded palette and
increased endpoint precision enable BC4 to achieve higher
quality than BC1 for single-channel cases. BC2, BC3, and
BC5 are simply combinations of BC1 and BC4, so we omit
their further descriptions. This work focuses on BC1 and
BC4 to encode RGB and single-channel textures, respec-
tively.

All these methods presented so far are designed to encode
all the pixels in a block as a single entity. On the other hand,
the idea of partitioning a block into multiple entities and en-
coding them separately is proposed [SP07]. BC7 further ex-
tends this idea by supporting a variety of partition shapes
and encoding each partition with different endpoints and in-
dices. More recently, ASTC [NLP�12] has been introduced
as a more flexible and efficient approach. ASTC computes
the optimal partitioning using a hash function and encodes
variable-sized blocks to different numbers of bytes. These
modern complex methods are not our focus in this paper,

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

but extending our method to support them is an interesting
future work.

2.2. Neural Texture Compression

Neural network-based image compression methods com-
monly use a multi-resolution feature grid that stores latent
embeddings of the input images in each grid cell [MESK22,
TMND�23]. For texture compression that requires random
access queries, Vaidyanathan et al. [VSW�23] propose a
neural compression method specifically designed for tex-
tures. They use a specialized architecture to encode mul-
tiple textures and their mipmap chains together with a
small MLP and compressed representation of tailored fea-
ture grids. Compact NGP [TMND�23] is the method of
compressing feature grids by indexing the spatial hash ta-
ble using the learned indexing codebook for collision de-
tection. It is not specialized for texture compression, but
it similarly has the random-access property which enables
its application to texture compression. Block-compressed
features (BCf) [WDOHN24] is the novel approach using
BC6 to compress learned neural texture features and de-
compress them in a real-time renderer. It uses BC as the
means of compressing neural features instead of learning
the encoding of block-compressed data. Inspired by these
neural texture compression methods, our method also en-
codes multiple textures with compressed feature grids de-
coded by small MLPs. However, unlike them, we focus on
block compression itself and propose a method to encode
block-compressed data that can be easily integrated into ex-
isting graphics pipelines.

Additionally, Pratapa et al. [POCM19] uses a neural net-
work (NN) for texture compression from a different per-
spective. They propose TexNN which replaces the expensive
search step of the optimal configuration such as partition-
ing and endpoints format in the recent texture compression
methods like BC7 and ASTC with a neural network.

2.3. Neural Network Quantization

Quantization is a technique to reduce the network size and
its inference costs by converting network weights and acti-
vations from high-precision floating points to low-precision
integers. There are two common approaches to quantizing
NNs: Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT) [GKD�21, NFA�21]. PTQ quantizes
the weights of a pre-trained network without any fine-tuning,
which is very fast but often comes with a significant loss
in accuracy. On the other hand, QAT fine-tunes the network
with quantized parameters so that the network can recover
the accuracy loss caused by quantization.

The standard operations used for quantization are based
on uniform affine transformations between a high-precision

real value r to a low-precision integer q as follows [ZCD22]:

q = clamp
�
b r

s
e+ z;n; p

�
; (1)

r = s � (q� z); (2)

where b�e denotes the half-way rounding function, s is the
scale factor which is a positive real value, and z is the zero
point which is an integer value that ensures the real zero is
representable by an integer value in the quantized domain.
n and p are the minimum and maximum representable val-
ues, respectively. Given that q is an unsigned integer, n = 0
and p = 2b� 1, where b is the target bit width. We refer to
the operators that perform these transformations to emulate
quantization during training as quantizers which can be rep-
resented using Eq. 1 and Eq. 2 as the following function:

Q(w) = s �
�

clamp
�
bw

s
e+ z;n; p

�
� z
�

; (3)

where w represents the real-valued weights of the network.

The choice of the scaling factor s is crucial for the quanti-
zation accuracy. It divides the range of the real value into 2b

intervals:

s =
b�a

2b�1
; (4)

where [a;b] is the range of the real value to be quantized.
Therefore, to determine the optimal scaling factor, the range
of the real value should be estimated. Using the minimum
and maximum values of the weights is a common approach
to estimating the range, which is often referred to as asym-
metric quantization because the range is not necessarily
symmetric concerning the origin. And, in practice, the zero
point z is computed as

z = ba � se: (5)

Note that the straight-through estimator (STE) [BLC13] is
commonly used during training to avoid extremely sparse
gradients due to the rounding function so that rxbxe = 1.
Considering Eq. 3, the backward pass of QAT only depends
on the clamping function:

rwQ(w) =

(
w; if w is not clamped;

0; otherwise:
(6)

To quantize the feature grids, Vaidyanathan et
al. [VSW�23] simulate quantization by adding uniform
noise to the features in grids and using a fixed quantization
range instead of computing the optimal range [a;b] during
training. Instead, we quantize the feature grids by applying
QAT of NNs to the grids directly, which is more principled
and allows for better quantization accuracy.

3. Method

Colors on the palette cn are linearly interpolated between
two endpoints for each block e0 2 R3;e1 2 R3 for BC1 (or

© 2024 The Author(s)



S. Fujieda & T. Harada / Neural Texture Block Compression

e0 2 R1;e1 2 R1 for BC4) with weights wn with the follow-
ing equation:

cn = (1�wn) � e0 + wn � e1; (7)

where n is a 2-bit index per pixel (0 � n � 3) for BC1 and
a 3-bit index per pixel (0 � n� 7) for BC4. Weights wn for
BC1 can be represented as wn = n

3 . However, depending on
whether the first endpoint numerically exceeds the second,
the palette of BC4 contains either four or six linearly inter-
polated values, with special values 0 and 1 in the case with
fewer interpolated values. Therefore, if e0 > e1, weights wn
for BC4 can be represented as wn = n

7 . On the other hand, if
e0 � e1, we can represent them as the following equation:

wn =

8><>:
e0

e0�e1
n = 0;

n�1
5 1� n� 6;

1�e0
e1�e0

n = 7:

(8)

With Eq. 7 and the first and third cases of Eq. 8, we achieve
cn = 0 and cn = 1, respectively.

Our goal is to construct a neural model encoding block-
compressed data in BC1 and BC4 formats, and these e0;e1,
and n (i.e wn) consist of block-compressed data. Therefore,
the straightforward way to encode them using NNs is to di-
rectly optimize them through differentiation of Eq. 7. Fig. 2
illustrates the architecture of this naive approach, which we
will explain further in Sec. 3.1. However, the resulting block-
compressed data with the naive approach show only limited-
quality results in our experiments. This is because weights
are high-frequency and not spatially correlated, which makes
it hard for MLPs to be directly optimized [RBA�19]. To
solve this problem, our method, NTBC, predicts the orig-
inal uncompressed colors instead of weights as shown in
Fig. 3. Uncompressed colors are lower-frequency and more
spatially correlated than weights, which is easier for MLPs
to learn. We will further describe our method in Sec. 3.2.

Material properties are usually represented by multi-
ple textures. Traditional block compression approaches can
only compress each texture individually which is memory-
intensive for materials (e.g. 8 MB for a single 4k texture in
BC1 or BC4 formats). On the other hand, NTBC encodes
multiple textures at once by being optimized for each mate-
rial, assuming a significant correlation across different tex-
tures as done by Vaidyanatha et al. [VSW�23]. In this sec-
tion, we first describe the naive approach and then extend it
to NTBC, considering BC1 with a single texture for brevity.
The methods can be easily extended to multiple textures
by modifying the number of output nodes in each network.
They can be also extended to BC4 by modifying the color
space from R3 to R1 and the weight index computation con-
sidering Eq. 8.

3.1. Naive Approach

As described in Fig. 2, we prepare two different MLPs to
predict endpoints and weights, referred to as the endpoint

Figure 2: Naive approach. Two MLPs infer weights and end-
points. The weight network is trained to output continuous
weights ŵ f , and the endpoint network is later fine-tuned with
quantized weights wn. Values in yellow squares form a com-
pressed block.

network and the weight network, respectively. The endpoint
network takes the 2D normalized block indices, s; t 2 [0;1],
as inputs and predicts endpoints ê0; ê1 for each block. The
weight network uses the 2D texture coordinates, u;v 2 [0;1],
as inputs, infers floating-point weights ŵ f for each texel, and
then, quantizes ŵ f to wn to construct block-compressed data.
These 2D inputs are encoded with multi-resolution feature
grids which excel at representing spatially-varying features.

The naive approach is trained to minimize the discrep-
ancy between reference uncompressed colors and decoded
colors derived from ê0; ê1, and wn with Eq. 7. To enhance
training efficiency and optimize for discrete weights wn, a
two-stage training procedure is employed: During the ini-
tial 80% of training iterations, an L2 loss function is applied
to decoded colors generated from ê0; ê1, and floating-point
weights ŵ f with Eq. 7. Subsequently, the endpoint network
is fine-tuned for the remaining iterations using quantized
weights wn, while the weights of the weight network are
frozen.

3.2. Neural Texture Block Compression

Our method, NTBC, is a novel method that encodes block-
compressed data in BC1 and BC4 formats using NNs. As
shown in Fig. 3, NTBC employs two networks similar to the
naive approach, but instead of the weight network, the color
network predicts the original uncompressed colors. Uncom-
pressed colors are lower-frequency and more spatially corre-
lated than weights, which is easier for MLPs to learn. Inputs
to the color network are 2D texture coordinates encoded with
multi-resolution feature grids, and it infers uncompressed
colors ĉ.

To construct block-compressed data from the predicted
ê0; ê1, and ĉ, we first compute colors on the palette ĉn from
ê0 and ê1 using Eq. 7, as shown in Fig. 3a. Second, we calcu-
late distances dn between ĉn and ĉ in the color space. Then,
a 2-bit index n for each texel is computed from dn. For sim-
plicity, distances dn are computed as negative values which

© 2024 The Author(s)




